NM835/NM529

Ship Operability and Control

Coursework tutorial

Dr Momchil Terziev

momchil.terziev@strath.ac.uk

Introduction to operability

1. ShipX calculates the motion transfer functions in six degrees of freedom for your ship at the specified speeds and headings.

3. The response spectra are combined with the specified seakeeping criteria to obtain operability limiting boundaries.

2. The Postprocessor combines the RAOs with the specified wave spectra to obtain the response spectra (short term statistics).

4. The operability limiting boundaries combined with the specified wave scatter diagram are summed up over the sea states to obtain the percentage operability.

<u>Step 1</u>: Preliminaries

• First, create a new database.

ShipX

<u>F</u> ile	<u>E</u> dit <u>N</u> ew <u>V</u> iew <u>T</u> ools <u>P</u> lug-Ins <u>W</u> indow <u>H</u> elp					
۲	<u>N</u> ew Database					
Z	<u>O</u> pen Database					
⊖;	<u>R</u> efresh					
1	Save					
÷.	Import +					
ŝ	Export					
	1 C:\Users\szb13150\Desktop					
	2 C:\Users\szb13150\Desktop\Added resistance					
	<u>3</u> H:\Added resistance					
	4 C:\Users\szb13150\Desktop\Added resistance\New folder					
	5 F:\database2					
	<u>6</u> H:\ShipXDatabase					
	7 F:\Double Body study\shipx					
	$\underline{8} \ blue \ $					
₽	E <u>x</u> it					

• Consulting the user manual is always a good idea!

University of Strathclyde

Engineering

Step 2: Ship geometry

- Import the required ship hull.
- Check that your imported file matches the requirements.

<u>Step 3</u>: Editing the ship particulars

• If the input does not match the requirements, you may edit the design loading condition as shown.

ShipX	_	
<u>File Edit New View Tools Plug-Ins Window Help</u>		
] 🕹 🎄 🚳 🖅 📴 🔊 🏹 📰 📷 🛱 🖷 🗙 🚇 💐 🖤 🕼 🏡 🗠	」 😰 🎾 メ 🦻 🏘 🖶 🤷 🖷 🏜 🖷 🖏 🖏 🌒 🙇 🤹	
💾 🎦 🔜 🚠 🖓 🏘 🚠 📑 🖌 🕅 🔊 D View		
	🛓 Ship: s175.mgf (imported)	
E-Martinia	👔 Import Lightship Weights 🛛 💩 Import and Append Lightship Weights	
E hip: s175.maf fimpor	💾 Principal Characteristics 🔲 Structural Characteristics 🚍 Ship Model Characteristics 🚠 Lightship Weight 🧆 Notes 🖷 Pictures	
Edit Hull		
Hull Transformation	Name s175.mgf (imported)	
Design di Export ship to Ship Exchange file Trim (bow	Main Characteristics	
Volume d 📇 Edit Principal <u>C</u> haracteristics	Length overall (Loa) 176.66 m	
🔁 Related c 🧮 Edit Ship <u>M</u> odel Characteristics	Length between perpendiculars (Lpp) 175.00 m	
Length between	Moulded depth (D) 11.00 m	
Breadth overall (E U Edit <u>S</u> tructural Characteristics	Breadth overall (Boa/Bmax) 25.40 m	
Tradeed document New Loading Condition	Stem position (Art) -1.66 m	
Folders 🔁 Explore	Additional parameters	
Generation Components Generation Generation	Rake or Keel U.UU m	
🗈 🔤 Common settings	Rise of floor	
📥 Duplicate (input only)		
≧ <u>D</u> elete	A. Fab Daving Landing Countries	
📸 Save Entire Database	Car Design Loading Condition	
🔓 Save Object		
😰 <u>G</u> enerate & View GLview File		
🍓 Refresh		
Check Out		
द्धिः Check O <u>u</u> t Recursive		
Check In	🞺 OK 🚜 Cancel 🗹 Apply 😰 Reset 🛛 🦉 Check In 🍇 Close	
や Other Check In Recursive		

<u>Step 4</u>: Ship principal characteristics

ChinV		ENCL.	A.520
SNIPA PRINCI	DAT HITT DATA	REPORT	
	AL HULL DATA	DATE	23/01/2020
		REF.	
SHIP:	s175.mqf (imported)		
Loading condition:	Design WL		
Draught AP/FP:	5.500 / 5.500 [m]		
	Symbol	Unit	
Length overall	LOA	[m]	176.66
Length on designed waterline	LWL	[m]	169.18
Length betw. perp.	Lpp	[m]	175.00
Breadth moulded	В	[m]	25.40
Breadth waterline	BwL	[m]	25.40
Depth to 1st deck	D	[m]	11.00
Draught at Lpp/2	т	[m]	5.50
Draught at FP	TFP	[m]	5.50
Draught at AP	TAP	[m]	5.50
Trim (pos. aft)	t	[m]	-0.00
Rake of keel		[m]	0.00
Rise of floor		[m]	0.00
Bilge radius		[m]	0.00
Sea water density	ρs	[kg/m³]	1025.0
Shell plating thickness		[mm]	
Shell plating in % of displ.		[%]	0.4
Volume displacement	∇	[m ²]	12427.
Displacement	Δ	[t]	12789.
Prismatic coefficient*	Cp	[-]	0.539
Block coefficient*	CB	[-]	0.508
Midship section coefficient	C _M	[-]	0.942
Longitudinal C.B. from Lpp/2	LCB	[m]	-0.74
Longitudinal C.B. from Lpp/2*	LCB	[% Lpp]	-0.42
Longitudinal C.B. from AP	LCB	[m]	86.75
Wetted surface	S	[m ²]	3828.0
Wetted surface of transom ste	rn Ar	[m ²]	0.0

- ShipX's plot program may require several attempts to open.
- Check that all parameters match your required input.

Step 5: Loading condition

🗱 ShipX		
<u>File Edit New View Tools Plug-Ins Window H</u> elp		
₹ \$ @ [= [] D [D] \$ = D] D \$ = D D \$ = D D	🍬]] 🍈 🏡 🗠 🎽 🚀 🗡 🕉 /iew	» 👫 🗤 🛅 📾 🏜 🖷 陷 🌚 🌑 🤽 😹
Tutorial Fleet (1) Coding condition no. 0, DWL: Design waterline (T = Coding coding condition no. 0, DWL: Design waterline (T = Coding coding condition no. 0, DWL: Design waterline (T = Coding coding	Image: Section of the section of th	tion no. 0, DWL: Design waterline (T = 5.50 m) - Ship: s175.mgf (import weights
		-

- Ensure that you design loading condition matches the requirements, set out in the coursework.
- Indicates an automatically calculated value
- For catamarans, the Breadth must be entered as twice that of a demihull.

<u>Step 6</u>: Define a response calculation

× ×	🚾 Vessel Responses in Waves: Untitled - LoadingCondition: Design waterline - Ship: s175.mgf (imported)
E Para Elect (1)	🕼 Data Check 🖼 Full Calculation
다 말 가 Heek (1) 175.mgf (imported) 은 월월 Loading conditions (1) 은 9월 Loading condition no. 0, DWL: Design waterline (T = 5.50 m) 응 4 80m	Settings
✓ De: ✓ De: ✓ Vol ✓ Trin ✓ Vol ✓ Vol ✓ New Yessel Response calculation ✓ Vol ✓ Vol ✓ Vol ✓ New Vessel Response Postprocessor Project ✓ ✓ Det ✓ New Stabtank configuration ✓ Breadth ovx ✓ New Vessel Response Calculation Manager ✓ Related dog %	Name Tutorial
 Interacted of the result of the series Analysis input Folders Propulsor component Structural component Structur	Geometry file C:\Users\szb13150\Desktop\root\Fle4DB75778\Ship3745C9E8\Loa322CA0D4\runs\RunD144AA2F\} Wumber of interpolated offset-points 20 Please note: If the geometry file is auto-generated, the bilge keel input must be checked after adding/removing stations in the ship geometry, as the bilge keel input in Veres is related to the station number index (which may then have changed).
Check In Recursive Multi-User Status for this Item	🖋 OK 🧩 Cancel 🕏 Apply 😰 Reset 🖓 Check In 🗞 Check In & Close

- Create a new vessel response calculation.
- Name your case suitably.
- Select Edit Input this may require multiple attempts.

Step 7: Edit the response calculation

		Input		
un Identification Text :			- 23	
Run name: Tutorial				
Ship name: s175.mgf (in	nported)		VERES 4.09.5	
Loading condition desc	ription: Desig	gn waterline		
ShipX exported data				
full type :	Calculation M	ethod :]	
Monobull O Multibul	Strip-theory	formulation (2D)		
·• Monoriali ·> Malariali				
		culation options		
nput Data :]	
Vessel Description Roll	Damping etc	Moonpool(s)		
Condition Info	ss Distribution	Additional Matrices		

- Name you case.
- The default theory for seakeeping calculations is of 2D strip theory of Tuck and Faltinsen (referenced in the manual and lecture notes).
- Select Vessel Description.
- Change the radial button accordingly.

<u>Step 8</u>: Edit the vessel description

Main Dimensio	ns :		Vessel Mass D	istribution :		
Lpp [175.000			iscibución.		
F		m	LCG rel. AP	86.758	m	5
Breadth J	25.400	m	VCG	5.500	m	VERES
Draught	5.500	m	Mass 🔤	12789.500	tonnes	ПК
Sinkage	0.000	m	Radii of Gyra	tion :		
T A			R 44	8.331	m	Cancel
I rim aft	0.000	deg	R 55	43.750	m	
Metacentric He	eights :		R 66	43.750	m	Help
🔽 Calculate	GM		R 64	0.000	m	
, Odiodiato	GIN					
			Coefficients for	r datacheck : —		
			Block Coefficie	nt, Cbi	0.5083	
			Waterplane Are	ea Coeff., Cw :	0.629	
			Mid Section Co	efficient, Cm :	0.9422	

positive forwards). Vertical center of gravity, VLG, is given relative to the baseline

- Input the radii of gyration as required by the coursework.
- Edit the VCG and LCG if necessary.
- If you do not complete this step, the analysis will not run.
- Ensure that R_{44} is correctly specified depending on your ship.
- Select Ok to return to the preprocessor window.

<u>Step 9</u>: Set the conditions

Condition information for frequency-domain simulations ×							
Vessel velocities (knots):	⊂ Wave periods (sec): -		-Wave headings (deg) :				
0.000 Add	4.000	Add	0.000 Add				
0.00 Modify Remove	4.000 ▲ 4.500 5.000 5.500 6.000 6.500 7.000 7.500 8.000 8.500 9.500 ¥	Modify Remove Generate	0.00 Modify Remove Number of values: 1 0 (deg) is head seas				
Number of values: 1	Number of periods:	31	180 (deg) is following seas				
Y Good D'Goonprion		ОК ,оопрооцо,	Cancel Help				
Condition Info Mas	ss Distribution Ac	Iditional Matrice	es				

- Select Condition Info.
- Set the ship speeds depending on the requirements.
- You may specify the wave periods individually, or generate them all at once.
- The limit is <100 wave periods.
- Ensure that your curves have a sufficient number of periods near the resonant frequency.
- Remember to check the headings: 0° is head seas.

Step 10: Check that roll damping is enabled

Roll Damping and Motion Control	\times						
- Specify roll damping and motion control devices to be included in the calculations :							
Wave amplitude: 1.000 (m) (for non-linear terms and max. foil angles)							
Include viscous roll damping							
Bilge keels Specify (Only for viscous roll damping)							
Roll damping tanks Select Number of tanks : 0							
Foils Select Number of foil pairs: 0							
Motion control devices Select Number of devices : 0							
OK Cancel Help							
Vessel Description. Roll Damping etc Moonpool(s)							

- Although this is enabled by default, it is a good idea to check that the viscous roll damping correction has been applied.
- Go to Roll Damping etc.
- Leave the wave amplitude as 1m.
- This is used in making the RAOs non-dimensional.
- Return to the pre-processor window.

Step 11: Run a data check

🚥 Vessel Responses in Waves: Tutorial - LoadingCondition: Design waterline - Ship: s175.mgf (imported) 📃 📼 📧
Bata Check 🖼 Full Calculation
Settings 🤣 Edit input 😥 Notes 😨 Information
Settings
Name Tutorial
Sa Import Stabtank Configuration
Coometry Eile
Number of interpolated offset-points 20
Please note: If the geometry file is auto-generated, the bilge keel input must be checked after adding/removing stations in the ship geometry, as the bilge keel input in Veres is related to the station number index (which may then have channed)
geonedy, as the bige reen riput in veres is related to the station number index (which may then have changed).
🖋 OK 🧩 Cancel 🕏 Apply 😰 Reset 🖓 Check In 🙀 Check In & Close

- Run a "Data Check".
- If successful, ShipX's plot program will open and display the ship particulars and sections (remember this might not work well and could require multiple attempts).

Finished - Success

• You can now run the full calculation.

00:00:00

23/01/20 15:04:26

00:00:01

Name: Tutorial Ship: s175.mgf (imported) Loading Condition: Design waterline Strathcl

Engineering

Step 12: Set-up a post processor

🧏 Ve	sel Responses Postp	processor (Motio	ns): Untitled - LoadingCondition: Des	ign waterline - Ship: s175.mgf (🗖 💷 🛋				
B	ransfer functions/st	atistics 😫 Ope	rability/Regularity					
5	Settings 🖗 Notes 😨 Information							
			Settings					
Na	me Untitled							
			Postprocessor setup					
	Label Get file by run Run Result file							
2	S-175 Untitled C. Users\szb13150\Desktop\root\Fle4DB75778\X							
	Locate Vessel Resp	onse Run		×				
	Step 1: Select ship	I	s175.mgf (imported)	•				
	Step 2: Select loading condition no. 0, DWL: Design waterline (T = 5.50 m)							
	Step 3: Select valid	d run	Untitled	• OK				
	File name from run C:\Users\szb13150\Desktop\root\Fle4DB75778\XShip3745C9E8\Loa322(Cancel							

- You are now ready to perform the operability analysis.
- The first step is to create a postprocessor for your calculation.
- Then, select your calculation and press Ok.
- Once ready, progress to Transfer functions/statistics

Step 13: Plot the RAOs

Select Datasets to Plot / Process

- Select Velocities :	acitu:	Options :	_
Untitled 0.0	knots 🔺	Displacements	
		Degree of Freedom:	VERES
		Surge	Postprocessor
		Sway Heave	Plat Data
		Roll Pitch	
		Yaw	
Select All Sel special Unselec	ot All	Relative Vertical Motions	Activate Plot
			Exit
Celest Plat Tupe:		, Select All Unselect All	
Select Headings:	_		
File Label: Head	ding:	Motion Point :	Preferences
Untitled 0.0	deg 🔥		Slamming
		Define points/positions	
		Wave Environment :	Gangway
		Regular waves Modulus	
		C Short term statistics Spectrum	
		C Long term statistics Specify	
Select All Sel. special Unseler	ct All		Help

- Highlight the required degrees of freedom, speeds and headings, and select Plot Data
- Sample result shown below (heave displacement RAO for 0° heading and 0 kn speed):

Step 14: Edit and export data

- If necessary, you can edit the *x* and *y* axes of the plot by selecting Preferences.
- To export the information used to produce the data, ensure that the "To plot file" box is ticked as shown.

Step 15: Interpret exported data

• Open the .mpl file as shown

y data

Units of 2nd column Identifying information Number of data points. If you have exported more than one parameter, these will be listed sequentially and grouped by the number of data points for each parameter.

<u>Step 16</u>: Short term statistics

• Set the radial button to Short term statistics and select Spectrum

Specify Wave Spectrum	×	Jecungs	×
Present statistical values as : Standard deviation (RMS) Include max. RMS values in plot legend	VERES	Dptions : Study : Displacements	
Wave Spectrum: Spectrum: JDNSWAP	Postprocessor OK	Degree of Freedom: Surge Sway	VERES Postprocessor
Wave spreading: Long-crested seas Power of cosine: 2	Lancel	Roll Pitch Yaw Relative Vertical Motions	Plot Data
Wave spreading angle to each side: 90,000 (deg.)		~	Activate Plot Exit
Spectrum Parameters :		Select All Unselect All	
 Keep Hs constant: Significant wave height, Hs: [1.000 [m] 		Center of Gravity Define points/positions	Preferences Slamming
Period range, Tp: 5.000 - 10.000 (sec)		-Wave Environment : C Regular waves Modulus	Gangway
Number of periods: 5		Short term statistics Spectrum	
C Combinations of Hs and Tp Specify combinations	Help	C Long term statistics Specify	Help

- Define the spectrum as directed by the coursework. In this example, the long-crested version of the JONSWAP spectrum is used.
- You may set specific combinations of Hs and Tp if necessary.

<u>Step 17</u>: Short term statistics #2

DISPLACEMENTS

- You may notice that standard deviation and RMS values are used interchangeably.
- This is the case because in linear frequency-domain calculations, the mean value of the response is zero, while the standard deviation is equivalent to the RMS value.

Step 18: Define points for analysis

- As the ship experiences motions resulting from the seaway, different parts of the ship will be characterised by different motions.
- For example consider the motions experienced by a person located at the CoG versus the motions experienced by someone on the deck above the AP.
- Points are defined selecting Define points/positions.

21

<u>Step 19</u>: Define points for analysis #2

• Points for analysis are defined in two steps. First, name the point as shown below. Then, switch the radial button to "All points for one file", and define its [x, y, z] coordinates.

Specify Points/Positions	\times		Specify Points/Positions	×
C All point labels C All points for one file O one point for all files		4	View: All point labels All points for one file Une point for all files Untitled	VERES Postorocessor
Edit point properties: Description text (for all files): FP (max. 15 characters) 2	OK Cancel	5	Edit point properties: Position on the hull : X: 175 (m) fwd of AP Y: 0.000 (m) off center (pos. starboard) Z: 12 (m) above Base Line	OK Cancel
			Slamming properties: k-factor: 0.000 Threshold velocity, Vcrit: 0.000 (m/sec) Threshold pressure, Pcrit: 0.000 (kPa)	
			Relative motion calibration file: Browse View	
3 Add Modify Remove Copy from Point properties: File/point:	Report	6	Add Modify Remove Copy from Point properties:	Report
< >	Slamming Report Relative Motion Report		<pre> 0.00 0.00 0.00 k= 0.00 Verit= </pre>	Slamming Report Relative Motion Report
Number of points :	Help		, Number of points : 1	Help

Step 20: Long term analysis

- ShipX enables the user to specify the waves observed at a particular area as input for the long term analysis. First, change the radial button to "Long term statistics" and set the required motion point as shown below.
- You must then specify the specific waves observed at the location where the ship will be located (this is known as a wave scatter diagram). The wave scatter data is coupled with the spectrum used to define the waves. To find the example wave scatter data, navigate to C:\Program Files (x86)\ShipX\PlugIns\Veres\Examples and open "allan.sea".
- A typical wave scatter diagram is shown above.

Motion Point :		
FP		•
Defi	ne points/positior	IS
-Wave Environment :	Mode :	
C Regular waves	Modulus	Ψ.
C Short term statistic	Spectrum	
Long term statistic	Specify	

<u>Step 21</u>: Long term analysis #2

- You are now ready to define the criteria against which the operability assessment is to be conducted. To do this, return to the vessel response post-processor and select Operability/Regularity.
- Here, define the criteria as shown.
- You can define multiple criteria as required at multiple locations.

Step 22: Long term analysis #3

• In some cases, you may be interested in information relating to the sea state and the ship's performance from a statistical point of view. This can be extracted by plotting the operability limiting boundaries. This can be achieved by setting the radial button to Operability limiting boundaries, specifying the Hs/Tp range suitably and plotting.

Waves cannot exist - above this curve (because they break).

Step 23: Long term analysis #4

- It is convenient to present operability data in terms of percentages. To do this, set the radial button to "Percentage operability", highlight the criteria, speeds and headings.
- Plot your result.

elect Datasets to Plot / Process	;		
Select Velocities : File Label: Untitled	Velocity: 0.0 knots 🔨	Select Criteria: Criterion : V.Acc@FP<0.15g All criteria	VERES Postprocesso
			Plot Data Activate Plot
Select All Sel. sp	ecial Unselect All	Select All Unselect All	Export XML
Select Headings :	en speed		Exit
Select headings independently	.	Operability limiting boundaries	
File Label:	Heading:	Plot Type: XY-plot 💌 Hs/Tp range	Define criteria
Untitled	0.0 deg 🔨	Combination of curves in each plot:	Points
		Show curve for breaking waves limit	Wave spectrun
		 Operability diagram (contours) 	Heading prob.
	~	Hs = 1.000 [m] Tp = 5.000 [sec]	Preferences
Select All Sel. sp	ecial Unselect All	Percentage operability Scatter diagram	Help

• Exporting the data used to create the operability diagram is done in the same way as was demonstrated previously: Preferences > To plot file .mpl

Step 24: Long term analysis #5

- Add more criteria, depending on the specific requirements of your ship.
- Each condition will produce its own percentage operability.
- The total operability corresponds to the lowest operability across all criteria.
- For example, consider the following as applied to the FP:
 - \circ Vertical accelerations <0.15g.
 - o Maximum 3% slamming probability.
 - Motion induced interruptions <2 per min.
 Motion induced sickness <3% per 2 hours.
- Criteria vary depending on ship type, function, etc.

- May differ on your PC

- Open the wave scatter diagram, given as an example by ShipX.
- You can find this by navigating to: C:\Program Files (<u>x86</u>)\ShipX\PlugIns\Veres\Examples
- It is advisable you make a copy of the original file, "allan.sea", to work on. *Note: you may not be able to work in the same directory make a copy in your H drive.*
- Open the file via the Notepad.
- Notice that significant wave heights are given as in a row above the period data

North s	sea, a	rea 11	. Annual.								
	2	1	10	8							
	.5	1.5	2.5	3.5	4.5	5.5	6.5	7.5	8.5	9.5	
3.	.5	4.5	5.5	6.5	7.5	8.5	9.5	10.5 🔸			
1	19	86	94	41	10	2	0	0			
	3	49	121	99	40	10	2	0		A matrix she	wing the number of
	1	17	63	73	40	13	3	1		A Matha She	
	0	6	27	39	26	10	3	1	(occurrences	of each height/period
	0	2	11	19	14	6	2	1		ambination	given above
	0	1	4	9	7	4	1	0 ┥	· (comomation	given above.
	0	0	2	4	4	2	1	0		8 columns –	• represent the periods
	0	0	1	2	2	1	1	0		10	
	0	0	0	1	1	1	0	0		10 rows –	represent the wave heights
	0	0	0	1	1	0	0	0			_
END											

END

Wave scatter data: Definitions in ShipX

• The first row in your Notepad contains the description of the file – you can modify this as you wish. This displays if you select "View..."

North	sea,	area	11. 2	Annua:	1.					
Number	of	ecure	ences							
Total	23	161	323	288	145	49	13	3	1005	
Hs										
9.5				1	1				2	
8.5				1	1	1			3	
7.5			1	2	2	1	1		7	
6.5			2	4	4	2	1		13	
5.5		1	4	9	7	4	1		26	
4.5		2	11	19	14	6	2	1	55	
3.5		6	27	39	26	10	3	1	112	
2.5	1	17	63	73	40	13	3	1	211	
1.5	3	49	121	99	40	10	2		324	
0.5	19	86	94	41	10	2			252	
Tz	3.5	4.5	5.5	6.5	7.5	8.5	9.5	10.5	Total	•

Hs and Tz values are the middle values in each interval

catter data input	>
Open Scatter Data File: c:\program files (x86)\shipx\plugins\veres\examples\a11an.sea	•
Open View	VERES Postprocessor
Scatter Data Info:	_
Title: North sea, area 11. Annual.	ОК
Number of Hs: 10 Range: 0.5 - 9.5 [m]	Cancel
Number of Tz: 8 Range: 3.5 - 10.5 [s]	
	Help

• You will notice that the wave scatter diagram is not in given in peak wave periods, rather, in zero crossing periods.

Wave scatter data: Definitions in ShipX #2

FND

- The type of period is controlled by changing the first number on the second row.
- By default, this is set to (2), which the software interprets as zero crossing period.
- To tell the software that we are working in peak periods, modify this to (1).
- Save your copy of the wave scatter and view it in ShipX (see previous step) to confirm the change.

lorth sea,	near Abe	erdeen.							
 1	1	10	8						
0.5	1.5	2.5	3.5	4.5	5.5	6.5	7.5	8.5	9.5
3.5	4.5	5.5	6.5	7.5	8.5	9.5	10.5		
19	86	94	41	10	2	0	0		
3	49	121	99	40	10	2	0		
1	17	63	73	40	13	3	1		
0	6	27	39	26	10	3	1		
0	2	11	19	14	6	2	1		
0	1	4	9	7	4	1	0		
0	0	2	4	4	2	1	0		
0	0	1	2	2	1	1	0		
0	0	0	1	1	1	0	0		
0	0	0	1	1	0	0	0		

North sea, near Aberdeen.

Number of occurences

	Total	23	161	323	288	145	49	13	3	1005	
	Hs										
	9.5				1	1				2	
	8.5				1	1	1			3	
	7.5			1	2	2	1	1		7	
	6.5			2	4	4	2	1		13	
	5.5		1	4	9	7	4	1		26	
	4.5		2	11	19	14	6	2	1	55	
	3.5		6	27	39	26	10	3	1	112	
	2.5	1	17	63	73	40	13	3	1	211	
	1.5	3	49	121	99	40	10	2		324	
	0.5	19	86	94	41	10	2			252	
_	Тр	3.5	4.5	5.5	6.5	7.5	8.5	9.5	10.5	Tota	1

29

Wave scatter data: Definitions in ShipX #3

- Next, we must ensure that the software reads the significant wave heights.
- This is controlled by the second number on the second row.
- By default, this is (1), which tells the software to interpret the wave heights as the middle value of the highest one third of the waves.
- Thus, no change is necessary.
- The next two entries indicate the number of significant wave heights, and peak periods. You must modify these based on your data.
- The case used here contains 15 peak periods and 20 significant wave heights.

A.2.2 Wave scatter diagram files (*.sea)

This section describes the file format of the scatter diagram input file, which enables the user to specify any chosen wave scatter diagram for use in the long term statistics of the VERES Postprocessor.

The file format is:

DESCRTEXT

```
IFORM HSTXTYPE NUMHS NUMTX
HS(IHs), IHs = 1, NUMHS
TX(ITx), ITx = 1 NUMTX
do IHs = 1, NUMHS
  (PROB(IHs,ITx), ITx = 1, NUMTX)
enddo
```

The definitions of the variables are given in Table 9.

Variable	Description	Туре	Unit
DESCRTEXT	Text describing the scatter diagram	Char	
IFORM	Identifies type of wave period	1	-
	$1 - T_p$		
	$2-T_z$		
	$3 - T_1$		
HSTXTYPE	Identifies if the H_s and T_x –values	1	-
	are given as:		
	1 – the middle value of the range		
	2 – the highest value of the range		
	3 – the lowest value of the range		
NUMHS	Number of significant wave heights	1	_
NUMTX	Number of wave periods	1	_
HS	Significant wave height	R(I)	m
TX	Wave period	R(I)	S
NPROB	Number of occurence of a sea state	R(I,I)	_

Table 9: Definition of variables

Taken from Fathi (2015) ShipX VesselResponses (VERES)- User's Manual31

An example of a wave scatter diagram input file is given below:

North sea, area 11 in Global Wave Statistics. Annual. 2 1 10 7 0.5 1.5 2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5 3.5 4.5 5.5 6.5 7.5 8.5 10 49 121 40 10 26 10 11 19 14 2 4 4 2 2 1 1

- Navigate to the following website: <u>https://app.metocea</u> <u>nview.com/helm/#/</u>
- Create an account or log in.
- Click on Hindcast.
- For this tutorial, assume we are asked to look at the North Sea.

- Go to your area of interest
- Click on "Select a point for stats"
- Click on the location of interest

- Set the dataset to MSL WW3 Global ST4
- Click next
- Do not click on any of the boxes or lines in the map

- Select the point you are interested in.
- Click Next.
- On the following screen, select Data Matrices.
- Navigate to Significant wave height vs Peak period and download the data as a CSV (Comma Separated Value) file.

	A	В	С	D	E	F	G	Н	- I	J	K	L	Μ	Ν	0	Р	Q	R	S
1	significant (0 - 1	01-Feb	02-Mar	03-Apr	04-May	05-Jun	06-Jul	07-Aug	08-Sep	09-Oct	10-Nov	11-Dec	Dec-13	13 - 14	14 - 15	15 - 16	16 - 17	17 - 18
2	0 - 0.5	0%	0%	0.60%	1.30%	0.30%	0.20%	0.60%	1.50%	3.60%	4.40%	3.20%	2%	1.20%	0.50%	0.20%	0.10%	< 0.1%	<0.1%
3	0.5 - 1	0%	0%	0.30%	5.40%	5.40%	0.40%	0.20%	0.50%	1.80%	4.40%	5.20%	4.50%	3.40%	2%	0.80%	0.30%	0.20%	<0.1%
4	1 - 1.5	0%	0%	0%	<0.1%	5.70%	4.20%	0.30%	<0.1%	0.20%	0.80%	1.60%	2.10%	2.30%	1.90%	0.90%	0.40%	0.30%	0.10%
5	1.5 - 2	0%	0%	0%	0%	0.30%	6.10%	1.80%	<0.1%	<0.1%	<0.1%	0.30%	0.60%	0.90%	0.90%	0.60%	0.20%	0.20%	<0.1%
6	2 - 2.5	0%	0%	0%	0%	<0.1%	0.90%	3.80%	0.30%	<0.1%	<0.1%	<0.1%	<0.1%	0.20%	0.30%	0.20%	<0.1%	0.10%	<0.1%
7	2.5 - 3	0%	0%	0%	0%	0%	<0.1%	1.30%	1.40%	<0.1%	<0.1%	<0.1%	<0.1%	<0.1%	<0.1%	<0.1%	<0.1%	<0.1%	<0.1%
8	3 - 3.5	0%	0%	0%	0%	0%	0%	0.10%	0.90%	0.30%	o <0.1%	0%	0%	0%	0%	<0.1%	0%	< 0.1%	<0.1%
9	3.5 - 4	0%	0%	0%	0%	0%	0%	<0.1%	0.20%	0.50%	o <0.1%	0%	0%	0%	0%	0%	0%	< 0.1%	<0.1%
10	4 - 4.5	0%	0%	0%	0%	0%	0%	0%	<0.1%	0.30%	o <0.1%	0%	0%	0%	0%	0%	0%	0%	0%
11	4.5 - 5	0%	0%	0%	0%	0%	0%	0%	<0.1%	<0.1%	0.10%	0%	0%	0%	0%	0%	0%	0%	0%
12	5 - 5.5	0%	0%	0%	0%	0%	0%	0%	0%	<0.1%	<0.1%	0%	0%	0%	0%	0%	0%	0%	0%
13	5.5 - 6	0%	0%	0%	0%	0%	0%	0%	0%	<0.1%	<0.1%	<0.1%	0%	0%	0%	0%	0%	o 0%	0%
14	6 - 6.5	0%	0%	0%	0%	0%	0%	0%	0%	0%	o <0.1%	<0.1%	0%	0%	0%	0%	0%	0%	0%
15	6.5 - 7	0%	0%	0%	0%	0%	0%	0%	0%	0%	o <0.1%	<0.1%	0%	0%	0%	0%	0%	0%	0%
16	7 - 7.5	0%	0%	0%	0%	0%	0%	0%	0%	0%	< 0.1%	0%	0%	0%	0%	0%	0%	0%	0%

- Excel interprets part of the data as dates – go to the webpage and replace the ranges with the relevant data.
- Average the interval.
- Repeat for peak period values.

	significant height		significant he	eight
	0 - 0.5			0.25
	0.5 - 1			0.75
	1 - 1.5			1.25
	1.5 - 2			1.75
s 0 1 1 2 2 3 3 3 4 4	2 - 2.5			2.25
	2.5 - 3	•		2.75
	3 - 3.5	•		3.25
	3.5 - 4	•		3.75
	4 - 4.5			4.25
	4.5 - 5			4.75
	5-55			5.25

0 - 1	01-Feb	02-Mar	03-Apr	04-May	05-Jun
		•	• •		
0.5	1 50	2 50	35	4 50	5 50
0.5	1.50	2.50	3.5	4.50	5.50

significant height	0.5	1.50	2.50	3.5	4.50	5.50	6.5	7.50	8.50	9.5	10.50	11.50	12.5	13.50	14.50	15.5	16.50	17.50	18.5	19.50	0
0.25	0%	0%	0.60%	1.30%	0.30%	0.20%	0.60%	1.50%	3.60%	4.40%	3.20%	2%	1.20%	0.50%	0.20%	0.10%	<0.1%	<0.1%	<0.1%	<0.1%	
0.75	0%	0%	0.30%	5.40%	5.40%	0.40%	0.20%	0.50%	1.80%	4.40%	5.20%	4.50%	3.40%	2%	0.80%	0.30%	0.20%	<0.1%	<0.1%	<0.1%	
1.25	0%	0%	0%	<0.1%	5.70%	4.20%	0.30%	<0.1%	0.20%	0.80%	1.60%	2.10%	2.30%	1.90%	0.90%	0.40%	0.30%	0.10%	<0.1%	<0.1%	
1.75	0%	0%	0%	0%	0.30%	6.10%	1.80%	<0.1%	<0.1%	<0.1%	0.30%	0.60%	0.90%	0.90%	0.60%	0.20%	0.20%	<0.1%	<0.1%	<0.1%	
2.25	0%	0%	0%	0%	<0.1%	0.90%	3.80%	0.30%	< 0.1%	<0.1%	<0.1%	<0.1%	0.20%	0.30%	0.20%	<0.1%	0.10%	<0.1%	<0.1%	<0.1%	
2.75	0%	0%	0%	0%	0%	<0.1%	1.30%	1.40%	< 0.1%	<0.1%	<0.1%	<0.1%	<0.1%	<0.1%	<0.1%	<0.1%	<0.1%	<0.1%	<0.1%	<0.1%	
3.25	0%	0%	0%	0%	0%	0%	0.10%	0.90%	0.30%	<0.1%	0%	0%	0%	0%	<0.1%	0%	<0.1%	<0.1%	<0.1%	09	6
3.75	0%	0%	0%	0%	0%	0%	<0.1%	0.20%	0.50%	<0.1%	0%	0%	0%	0%	0%	0%	<0.1%	<0.1%	0%	09	6
4.25	0%	0%	0%	0%	0%	0%	0%	<0.1%	0.30%	<0.1%	0%	0%	0%	0%	0%	0%	0%	0%	0%	<0.1%	
4.75	0%	0%	0%	0%	0%	0%	0%	<0.1%	<0.1%	0.10%	0%	0%	0%	0%	0%	0%	0%	0%	0%	09	6
5.25	0%	0%	0%	0%	0%	0%	0%	0%	<0.1%	<0.1%	0%	0%	0%	0%	0%	0%	0%	0%	0%	09	6
5.75	0%	0%	0%	0%	0%	0%	0%	0%	< 0.1%	<0.1%	<0.1%	0%	0%	0%	0%	0%	0%	0%	0%	09	6
6.25	0%	0%	0%	0%	0%	0%	0%	0%	0%	<0.1%	<0.1%	0%	0%	0%	0%	0%	0%	0%	0%	09	6
6.75	0%	0%	0%	0%	0%	0%	0%	0%	0%	<0.1%	<0.1%	0%	0%	0%	0%	0%	0%	0%	0%	09	6
7.25	0%	0%	0%	0%	0%	0%	0%	0%	0%	<0.1%	0%	0%	0%	0%	0%	0%	0%	0%	0%	09	6

- Now we must remove the <0.1% and 0% data.
- Use Ctrl+H to 'find and replace' as shown, or search for 'replace' using the search bar at the top of your screen. Repeat for <0.1%.
- Removing the <0.1% values means we lost 1.9% of the waves this is acceptable.

- Copy the height and period data as shown.
- Populate wave occurrences by multiplying the % by some large number. In this example, I used 100000.
- The number 100000 represents how many waves have occurred.
- As long as the ratio is preserved and all occurrences are **integer numbers**, the actual value (100000) does not matter

Undo	Clipbe	oard	5		Font	5	5	A	ignment		Γ <u>υ</u>	Numb	er	F <u>s</u>	Styles			Cells		E	Editing	
M	✓ : ×	$\checkmark f_x$	=B2*1000	00																		
	A	В	C	D	E	F	G	Н		J	K	L	M	N	0	Р	Q	R	S	T	U	V
significa	nt height	0.5	1.50	2.50	3.5	4.50	5.50	6.5	7.50	8.50	9.5	10.50	11.50	12.5	13.50	14.50	15.5	16.50	17.50	18.5	19.50	
	0.25			0.60%	1.30%	0.30%	0.20%	0.60%	1.50%	3.60%	4.40%	3.20%	2%	1.20%	0.50%	0.20%	0.10%					
	0.75			0.30%	5.40%	5.40%	0.40%	0.20%	0.50%	1.80%	4.40%	5.20%	4.50%	3.40%	2%	0.80%	0.30%	0.20%				
	1.25					5.70%	4.20%	0.30%		0.20%	0.80%	1.60%	2.10%	2.30%	1.90%	0.90%	0.40%	0.30%	0.10%			
	1.75					0.30%	6.10%	1.80%				0.30%	0.60%	0.90%	0.90%	0.60%	0.20%	0.20%				
	2.25						0.90%	3.80%	0.30%					0.20%	0.30%	0.20%		0.10%				
	2.75							1.30%	1.40%													
	3.25							0.10%	0.90%	0.30%												
	3.75								0.20%	0.50%												
	4.25									0.30%												
	4.75										0.10%											
	5.25																					
	5.75																					
	6.25																					
	6.75																					
	7.25																					
											Perio	bd										
Wave he	eight 📕	0.5	1.50	2.50	3.5	4.50	5.50	6.5	7.50	8.50	9.5	10.50	11.50	12.5	13.50	14.50	15.5	16.50	17.50	18.5	19.50	
	0.25	.00000	0	600	1300	300	200	600	1500	3600	4400	3200	2000	1200	500	200	100	0	0	0	0	
	0.75		0	300	5400	5400	400	200	500	1800	4400	5200	4500	3400	2000	800	300	200	0	0	0	
	1.25	0	0	0	0	5700	4200	300	0	200	800	1600	2100	2300	1900	900	400	300	100	0	0	
	1.75	0	0	0	0	300	6100	1800	0	0	0	300	600	900	900	600	200	200	0	0	0	
	2.25	0	0	0	0	0	900	3800	300	0	0	0	0	200	300	200	0	100	0	0	0	
	2.75	0	0	0	0	0	0	1300	1400	0	0	0	0	0	0	0	0	0	0	0	0	
	3.25	0	0	0	0	0	0	100	900	300	0	0	0	0	0	0	0	0	0	0	0	
	3.75	0	0	0	0	0	0	0	200	500	0	0	0	0	0	0	0	0	0	0	0	
	4.25	0	0	0	0	0	0	0	0	300	0	0	0	0	0	0	0	0	0	0	0	
	4.75	0	0	0	0	0	0	0	0	0	100	0	0	0	0	0	0	0	0	0	0	
	5.25	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	5.75	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	6.25	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	6.75	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	7.25	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	1.20	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	

Wave scatter data: Process data

END

- Copy the wave height column.
- Select the cell above the first period.
- Right click, and select "Transpose" under Paste Options.
- Create a copy of your "allan.sea" and paste your wave occurrences in place of the existing data.
- Edit the number of heights and periods

0.25	0.75	1.25	1.75	2.25	2.75	3.25	3.75	4.25	4.75	5.25	5.75	6.25	6.75	7.25					
0.5	1.50	2.50	3.5	4.50	5.50	6.5	7.50	8.50	9.5	10.50	11.50	12.5	13.50	14.50	15.5	16.50	17.50	18.5	19.50
0	0	600	1300	300	200	600	1500	3600	4400	3200	2000	1200	500	200	100	0	0	0	0
0	0	300	5400	5400	400	200	500	1800	4400	5200	4500	3400	2000	800	300	200	0	0	0
0	0	0	0	5700	4200	300	0	200	800	1600	2100	2300	1900	900	400	300	100	0	0
0	0	0	0	300	6100	1800	0	0	0	300	600	900	900	600	200	200	0	0	0
0	0	0	0	0	900	3800	300	0	0	0	0	200	300	200	0	100	0	0	0
0	0	0	0	0	0	1300	1400	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	100	900	300	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	200	500	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	300	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	100	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
North	n sea, are	ea 11. Ar	nnual. 15	20															
0.25	0.75	1.25	1.75	2.25	2.75	3,25	3.75	4.25	4.75	5.25	5.75	6.25	6.75	7.25					
0.5	1.50	2.50	3.5	4.50	5.50	6.5	7.50	8.50	9.5	10.50	11.50	12.5	13.50	14.50	15.5	16.50	17.50	18.5	19.50
0	0	600	1300	00	200	600	1500	3600	4400	3200	2000	1200	500	200	100	0	0	0	0
0	0	300	5400	5400	400	200	500	1800	4400	5200	4500	3400	2000	800	300	200	0	0	0
0	0	0	0	5700	4200	300	0	200	800	1600	2100	2300	1900	900	400	300	100	0	0
0	0	0	0	90	6100	1800	0	0	0	300	600	900	900	600	200	200	0	0	0
0	0	0	0	0	900	3800	300	0	0	0	0	200	300	200	0	100	0	0	0
0	0	0	0	9	0	1300	1400	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	9	0	100	900	300	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	1	0	0	200	500	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	2	0	0	0	000	100	0	0	0	0	0	0	0	0	0	0
a	0	0	0	1	0	0	0		100	0	0	0	0	0	0		0	0	0
	и			4	и	и	и	9	и	и	9	и		и	и	6	0	Ø	0
0	0	0	0	3	0	0	0 0	0 0	0	0	0 0	0	0	0	0	0	0 0	0 0	0 0
0 0	0 0	0	0	0	0 0 0	0 0 0	0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0	0	0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0
0 0 0	0 0 0	0 0 0	0 0 0	0	0 0 0	0 0 0	0 0 0	0 0 0 0	0 0 0	0 0 0	0 0 0 0	0 0 0	0 0 0	0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0

Wave scatter data: Process data

- Check your data has been interpreted correctly in ShipX.
- Note that ShipX has rounded up values 0.25m→0.3m.
- Open the wave scatter diagram.
- Check the range of Hs/Tp
- Click View
- Check the interpretation.

tasets to Plot / Proce	55	
elocities :		Select Criteria:
bel:	Velocity:	Criterion :
led led	0.0 knots A 15.0 knots	Vertical acce Vertical acce
Contras data incust	_	Vertical acce
Scatter data input		
– Open Scatter Data F	ile:	
c:\users\szb13150	Nonedrive - university of	_
strathclyde\desk.to	p\allan_copy.sea	
		VERES
Upen	View 3	Postprocesso
Scatter Data Info: -		
Title: North sea, are	a 11. Annual.	OK
Number of Hs: 15	Range: 0.3 - 7.3 [m]	Cancel
Number of Tp: 20	Range: 0.5 - 19.5 [s]	
		Help
	V	
Select All Sel. s	pecial Unselect All	Percentage oper-
Eat Time Lat	Chalua	
Est. Time Left	Status	
00:00:00	Finished - Success	

Tutorial end

- Adapt the techniques above to the specific problem you are tasked with.
 - \circ Change the ship hull and its particulars.
 - \circ Set the required headings, wave periods, and ship speeds.
 - \circ Specify the spectrum as instructed.
 - \circ Create and use the required wave scatter diagram as directed.
 - \circ Define the criteria as required for your ship, and apply them to the points of interest.
 - \circ Export the necessary information.
- If you have problems/questions:
 - Email me: <u>momchil.terziev@strath.ac.uk</u>
 - \circ Check the user manual:
 - □ Help>Documentation>VERES Manual for general help with the software.
 - □ Help>Documentation>VERES Theory Manual a more in-depth explanation of the theory.
- Visit https://momchil-terziev.github.io/tutorials if you are using ShipX for your own work.